Sunday, August 21, 2016

College Algebra, Chapter 5, 5.4, Section 5.4, Problem 46

Solve the Logarithmic Equation $2 \log x = \log 2 + \log (3x - 4)$ for $x$.

$
\begin{equation}
\begin{aligned}
2 \log x &= \log 2 + \log (3x - 4)\\
\\
\log x ^2 &=\log 2 + \log(3x - 4) && \text{Law of Logarithm } \log_a A^c = C \log_a A\\
\\
10^{\log x^2} &= 10^{\log 2} + 10^{\log (3x - 4)} && \text{Raise 10 to each side}\\
\\
x^2 &= 2 + 3x - 4 && \text{Property of } \log\\
\\
x^2 - 3x + 2 &= 0 \\
\\
(x - 2) (x - 1) &= 0
\end{aligned}
\end{equation}
$

Solve for $x$

$
\begin{equation}
\begin{aligned}
x - 2 &= 0 &&\text{and}& x -1 &= 0 \\
\\
x &= 2 &&& x &= 1
\end{aligned}
\end{equation}
$

The only solution in the given equation is $x = 2$, since $x = 1$ will make the term $\log(3x - 4)$ negative.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...