Thursday, August 18, 2016

Single Variable Calculus, Chapter 2, 2.3, Section 2.3, Problem 37

Prove that $\lim\limits_{x \rightarrow 0} x^4 \displaystyle \cos \frac{2}{x} = 0$


$
\begin{equation}
\begin{aligned}
& \text{Proof:}\\
\phantom{x}& && \lim\limits_{x \to 0} x^4 \cos \frac{2}{x} = \lim\limits_{x \to 0} x^4 \cdot \lim\limits_{x \to 0} \cos \frac{2}{x}\\
\phantom{x}& && \lim\limits_{x \to 0} x^4 \cos \frac{2}{x} \text{ does not exist, the function is undefined because the denominator is equal to 0. However, since}\\
\phantom{x}& && - 1 \leq \cos \frac{2}{x} \leq 1\\
& \text{We have,}\\
\phantom{x}& && - x^4 \leq x^4 \cos \frac{2}{x} \leq x^4\\
& \text{We know that, }\\
\phantom{x}& && \lim\limits_{x \to 0} x^4 = -(0)^4 = 0 \text{ and } \lim\limits_{x \to 0} x^4 = (0)^4 = 0\\
& \text{Taking}\\
\phantom{x}& && f(x) = -x^4 \quad g(x) = x^4 \cos \frac{2}{x} \quad h(x) = x^4 \text{ in the squeeze theorem we obtain }\\
\phantom{x}& && \lim\limits_{x \to 0} x^4 \cos \frac{2}{x} = 0
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...