Friday, August 5, 2016

int xe^(-4x) dx Find the indefinite integral

Given
int x(e^(-4x)) dx
by applying  integration by parts, we'll get the answer
let u=x => u'= 1
v'=e^(-4x) so , v= -1/4e^(-4x)
Now by integration by parts ,
int uv' dx = uv - int u'v dx
so ,
int xe^(-4x) dx = -x/4e^(-4x) -int (1) -1/4e^(-4x) dx
=-x/4e^(-4x) +1/4int e^(-4x) dx
=-x/4e^(-4x) +1/4 int e^(-4x) dx
let us find
int e^(-4x) dx
let u= -4x
du = -4dx  so dx = -1/4du
so,
int e^(-4x) dx= int e^(u) -1/4du
=-1/4int e^u du
=-1/4e^u = -1/4e^(-4x)
so, now
int xe^(-4x) dx = -x/4e^(-4x) +1/4int e^(-4x) dx
=-x/4e^(-4x) +1/4 (-1/4)e^(-4x)
=-x/4e^(-4x) -1/16e^(-4x) +C

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...