Friday, August 5, 2016

int 2 / (7e^x + 4) dx Find the indefinite integral

To evaluate the given integral problem: int 2/(7e^x+4)dx , we may apply u-substitution using:  u= e^x then du = e^x dx .
 Plug-in u = e^x on du= e^x dx , we get: du = u dx or (du)/u =dx
The integral becomes:
int 2/(7e^x+4)dx =int 2/(7u+4)* (du)/u
                         =int 2/(7u^2+4u)du
 Apply the basic properties of integration: int c*f(x) dx= c int f(x) dx .
int 2/(7u^2+4u)du =2int 1/(7u^2+4u)du
Apply completing the square: 7u^2+4u =(sqrt(7)u+2/sqrt(7))^2 -4/7
2int 1/(7u^2+4u)du =2int 1/((sqrt(7)u+2/sqrt(7))^2 -4/7)du
 
 
Let v =sqrt(7)u+2/sqrt(7) then dv = sqrt(7) du  or (dv)/sqrt(7) = du .
The integral becomes: 
2int 1/(7u^2+4u)du =2 int 1/(v^2 -4/7) *(dv)/sqrt(7)
Rationalize the denominator:
2 int 1/(v^2 -4/7) *(dv)/sqrt(7) *sqrt(7)/sqrt(7)
= 2 int (sqrt(7)dv)/ ( 7*(v^2 -4/7))
=2 int (sqrt(7)dv)/ ( 7v^2 -4)
   
From the table of integrals, we may apply int dx/(x^2-a^2) = 1/(2a)ln[(u-a)/(u+a)]+C
 Let: w = sqrt(7)v then dw = sqrt(7) dv
2int (sqrt(7) dv)/ ( 7v^2 -4) =2int (sqrt(7) dv)/ (( sqrt(7)v)^2 -2^2)
                  = 2 int (dw)/ (w^2-2^2)
                 = 2 *1/(2*2)ln[(w-2)/(w+2)]+C
                 =1/2ln[(w-2)/(w+2)]+C
Recall we let: w =sqrt(7)v and v =sqrt(7)u+2/sqrt(7) .
Then, w=sqrt(7)*[sqrt(7)u+2/sqrt(7)] = 7u +2
Plug-in u =e^x on w=7u +2 , we get: w= 7e^x+2
The indefinite integral will be:
int 2/(7e^x+4)dx =1/2ln[(7e^x+2-2)/(7e^x+2+2)]+C
                      =1/2ln[(7e^x)/(7e^x+4)]+C
 
 

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...