Thursday, August 4, 2016

College Algebra, Chapter 3, 3.6, Section 3.6, Problem 10

Evaluate $f + g$, $f - g$, $fg$ and $\displaystyle \frac{f}{g}$ of the function $\displaystyle f(x) = \frac{2}{x+1}$ and $\displaystyle g(x) = \frac{x}{x+1}$ and find their domain

For $f+g$,

$
\begin{equation}
\begin{aligned}
f+g &= f(x) + g(x)\\
\\
f+g &= \frac{2}{x+1} + \frac{x}{x+1} && \text{Substitute } f(x) = \frac{2}{x+1} \text{ and } g(x) = \frac{x}{x+1}\\
\\
f+g &= \frac{2+x}{x+1}
\end{aligned}
\end{equation}
$

The function can't have a denominator equal to zero. So the domain of $f(x) + g(x)$ is $(-\infty,-1)\bigcup(-1,\infty)$

For $f-g$

$
\begin{equation}
\begin{aligned}
f-g &= f(x) - g(x) \\
\\
f-g &= \frac{2}{x+1} - \frac{x}{x+1} && \text{Substitute } f(x) = \frac{2}{x+1} \text{ and } g(x) = \frac{x}{x+1}\\
\\
f-g &= \frac{2-x}{x+1}
\end{aligned}
\end{equation}
$

The function can't have a denominator equal to zero. So the domain of $f(x) - g(x)$ is $(-\infty,-1)\bigcup(-1,\infty)$


For $fg$

$
\begin{equation}
\begin{aligned}
fg &= f(x) \cdot g(x) \\
\\
fg &= \left( \frac{2}{x+1} \right) \left( \frac{x}{x+1} \right) && \text{Substitute } f(x) = \frac{2}{x+1} \text{ and } g(x) = \frac{x}{x+1}\\
\\
fg &= \frac{2x}{(x+1)^2}
\end{aligned}
\end{equation}
$

The function can't have a denominator equal to zero. So the domain of $f(x) \cdot g(x)$ is $(-\infty,-1)\bigcup(-1,\infty)$

For $\displaystyle \frac{f}{g}$

$
\begin{equation}
\begin{aligned}
\frac{f}{g} &= \frac{f(x)}{g(x)}\\
\\
\frac{f}{g} &= \frac{\frac{2}{x+1}}{\frac{x}{x+1}} && \text{Substitute } f(x) = \frac{2}{x+1} \text{ and } g(x) = \frac{x}{x+1}\\
\\
\frac{f}{g} &= \frac{2}{\cancel{x+1}} \cdot \frac{\cancel{x+1}}{x} && \text{Revert the divisor and multiply}\\
\\
\frac{f}{g} &= \frac{2}{x}
\end{aligned}
\end{equation}
$

The function can't have a denominator equal to zero. So the domain of $\displaystyle \frac{f(x)}{g(x)}$ is $(-\infty, 0) \bigcup (0, \infty)$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...