Monday, July 4, 2016

College Algebra, Chapter 5, Review Exercise, Section Review Exercise, Problem 64

Evaluate the equaiton $3^{2x} - 3^x - 6 = 0$. Find the exact solution, otherwise use a calculator.

$
\begin{equation}
\begin{aligned}
3^{2x} - 3^x - 6 &= 0 \\
\\
(3^x - 3)(3^x + 2) &= 0 && \text{Factor}
\end{aligned}
\end{equation}
$

Solve for $x$

$
\begin{array}{rll|rrl}
3^x - 3 &= 0 & && 3^x + 2 &= 0\\
\\
3^x &= 3 & \text{Add 3} && 3^x &= -2 & \text{Subtract 2}\\
\\
\ln 3^x &= \ln 3 & \text{Take ln of each side} && \ln3^x &= \ln(-2) & \text{Take ln of each side}\\
\\
x \ln 3 &= \ln 3 & \text{Properties of ln} && x \ln 3 &= \ln(-2) & \text{Properties of ln}\\
\\
x &= \displaystyle \frac{\ln3}{\ln3} & \text{Divide by ln 3} && x &= \displaystyle \frac{\ln(-2)}{\ln(3)} & \text{Divide by ln 3}\\
\\
x &= 1
\end{array}
$

The only solution of the given equation is $x = 1$, since $x$ can't have a negative value.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...