Friday, July 29, 2016

Single Variable Calculus, Chapter 7, 7.3-2, Section 7.3-2, Problem 12

Evaluate $\ln (2x + 1) = 2 - \ln x$.



$
\begin{equation}
\begin{aligned}

& \ln (2x + 1) + \ln x = 2
\\
\\
& \ln x (2x + 1) = 2
\\
\\
& e^{\ln x (2x + 1)} = e^2
\\
\\
& x (2x + 1) = e^2
\\
\\
& 2x^2 + x = e^2
\\
\\
& 2x^2 + x - e^2 = 0


\end{aligned}
\end{equation}
$


Using Quadratic Formula


$
\begin{equation}
\begin{aligned}

x =& \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\\
\\
x =& \frac{-1}{ \pm \sqrt{(1)^2 - 4(2) (-e^2)}}
\\
\\
x =& \frac{-1 \pm \sqrt{1 + 8e^2}}{4}


\end{aligned}
\end{equation}
$


Since, $\displaystyle x = \frac{-1 - \sqrt{1 + 8e^2}}{4}$ will not satisfy the original equation because $\displaystyle \ln \frac{-1 - \sqrt{1 + 8e^2}}{4}$ is undefined.

Therefore, $\displaystyle x = \frac{-1 + \sqrt{1 + 8e^2}}{4}$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...