Thursday, July 21, 2016

College Algebra, Chapter 3, 3.1, Section 3.1, Problem 40

Given the function $\displaystyle f(x) = \frac{2x}{x-1}$. Find $f(a)$, $f(a+h)$ and the difference quotient $\displaystyle \frac{f(a+h) - f(a)}{h}$ where $h \neq 0$

For $f(a)$
$\displaystyle f(a) = \frac{2a}{a-1}$ Replace $x$ by $a$

For $f(a+h)$
$\displaystyle f(a+h) = \frac{2(a+h)}{a+h-1}$

For $\displaystyle \frac{f(a+h)-f(a)}{h}$

$
\begin{equation}
\begin{aligned}
\frac{f(a-h)-f(a)}{h} &= \frac{\frac{f(a+h)}{a+h-1} - \frac{2a}{a-1} }{h} && \text{Substitute } f(a+h) = \frac{2(a+h)}{a+h-1} \text{ and } f(a) = \frac{2a}{a-h}\\
\\
&= \frac{(2a+2h)(a-1)-2a(a+h-1)}{h(a-1)(a+h-1)} && \text{Get the LCD}\\
\\
&= \frac{2a^2 - 2a + 2ah - 2h - 2a^2 - 2ah + 2a}{h(a-1)(a+h-1)} && \text{Combine like terms}\\
\\
&= \frac{-2\cancel{h}}{\cancel{h}(a-1)(a+h-1)} && \text{Cancel out like terms}\\
\\
&= \frac{-2}{(a-1)(a+h-1)}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...