Thursday, July 14, 2016

Single Variable Calculus, Chapter 4, 4.7, Section 4.7, Problem 8

Suppose that the equation $\displaystyle P = \frac{100 I}{I^2 + I + 4}$ represents the rate $\displaystyle \left( \frac{\text{in mg carbon}}{\frac{m^3}{h}} \right)$ at which photosyntehsis takes place for a species of Phytoplankton where $I$ is the light intensity (measured in thousands of foot candles). For what light intensity is $P$ a maximum?

$
\begin{equation}
\begin{aligned}
\text{if } P &= \frac{100 I}{I^2 + I +4} \quad \text{, then by using Quotient Rule}\\
\\
P' &= \frac{(I^2 + I 4) (100) - (100I)(2I +1)}{(I^2 + I +4)^2}
\end{aligned}
\end{equation}
$

when $P'=0$

$
\begin{equation}
\begin{aligned}
0 &= 100I^2 + \cancel{100I} + 400 - 200I^2 - \cancel{100I}\\
\\
0 &= -100I^2 + 400\\
\\
100I^2 &= 400\\
\\
I &= \sqrt{\frac{400}{100}}\\
\\
I &= 2 \quad \text{and} \quad I = -2
\end{aligned}
\end{equation}
$

If we evaluate $P$ with these values,


$
\begin{equation}
\begin{aligned}
\text{when } I & = 2 &&& \text{when } I & = -2\\
\\
P & = \frac{100(2)}{2^2+2+4} &&& P &= \frac{100(-2)}{(-2)^2-2+4}\\
\\
P &= 20 &&& P &= -5.20
\end{aligned}
\end{equation}
$

$P(2) > P(-2)$, therefore the light intensity that will make $P$ maximum is $I=2$ thousands of foot candles.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...