Sunday, July 24, 2016

Single Variable Calculus, Chapter 1, Review Exercises, Section Review Exercises, Problem 17

State whether the function is even, odd or neither even nor odd.



$
\begin{equation}
\begin{aligned}

\text{ a)} f(x) =& 2x^5 - 3x^2 + 2\\
f(-x) =& 2 (-x)^5 - 3 (-x)^2 + 2\\
f(-x) =& -2x^5 - 3x^2 + 2\\
\end{aligned}
\end{equation}
$


.: The function is neither odd nor even


$
\begin{equation}
\begin{aligned}

\text{b) } f(x) =& x^3 - x^7\\
f(-x) =& (-x)^3 - (-x)^7\\
f(-x) =& -x^3 + x^7\\
f(-x) =& -(x^3 - x^7)

\end{aligned}
\end{equation}
$


.: The function is odd


$
\begin{equation}
\begin{aligned}

\text{c)} f(x) =& \cos (x^2)\\
f(-x) =& \cos ((-x)^2)\\
f(-x) =& \cos (x^2)

\end{aligned}
\end{equation}
$


.: The function is even


$
\begin{equation}
\begin{aligned}

\text{d)} f(x) =& 1 + \sin x\\
f(-x) =& 1 + \sin (-x)\\
f(-x) =& 1 - \sin x

\end{aligned}
\end{equation}
$


.: The function is neither odd nor even

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...