Tuesday, July 26, 2016

int tan^6(3x) dx Find the indefinite integral

To evaluate the integral int tan^6(3x) dx , we apply u-substitution by letting:
u =3x then  du = 3 dx or  (du)/3 = dx .
Plug-in the values, we get:
int tan^6(3x) dx =int tan^6(u) * (du)/3
 Apply the basic properties of integration: int c*f(x) dx= c int f(x) dx .
int tan^6(u) * (du)/3= 1/3int tan^6(u) du
Apply integration formula for tangent function: int tan^n(x)dx = (tan^(n-1)(x))/(n-1)- int tan^(n-2)(x)dx .
1/3int tan^6(u) du =1/3 *[(tan^(6-1)(u))/(6-1)- int tan^(6-2)(u)du]
                             =1/3*[(tan^(5)(u))/(5)- int tan^(4)(u)du]
Apply another set integration formula for tangent function on int tan^(4)(u)du .
int tan^(4)(u)du =(tan^(4-1)(u))/(4-1)- int tan^(4-2)(u)du
                          =(tan^(3)(u))/(3)- int tan^(2)(u)du
For the integral of int tan^(2)(u)du , we may apply integration formula: int tan^2(x) dx = tan(x)-x+C .
int tan^(2)(u)du =tan(u)-u +C
 
Applying int tan^(2)(u)du =tan(u)-u +C , we get:
int tan^(4)(u)du =(tan^(3)(u))/(3)- int tan^(2)(u)du
                         =(tan^(3)(u))/(3)- [tan(u)-u] +C
                          =(tan^(3)(u))/(3)- tan(u)+u +C
Applying  int tan^(4)(u)du=(tan^(3)(u))/(3)- tan(u)+u +C . we get:
1/3int tan^6(u) du=1/3*[(tan^(5)(u))/(5)- int tan^(4)(u)du]
                              =1/3*[(tan^(5)(u))/(5)- [(tan^(3)(u))/(3)- tan(u)+u]] +C
                             =1/3*[(tan^(5)(u))/(5)- (tan^(3)(u))/(3)+ tan(u)-u] +C
                             = (tan^(5)(u))/15- (tan^(3)(u))/9+ tan(u)/3-u/3 +C
Plug-in u = 3x on (tan^(5)(u))/15- (tan^(3)(u))/9+ tan(u)/3-u/3 +C ,we get the indefinite integral as:
int tan^6(3x) dx=(tan^(5)(3x))/15-( tan^(3)(3x))/9+ tan(3x)/3-(3x)/3 +C
                          =(tan^(5)(3x))/15-( tan^(3)(3x))/9+ tan(3x)/3-x +C
 

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...