Tuesday, June 2, 2015

int 1/(1 + sqrt(2x)) dx Find the indefinite integral by u substitution. (let u be the denominator of the integral)

Solving for indefinite integral using u-substitution follows:
int f(g(x))*g'(x) dx = int f(u) du where we let u = g(x) .
In this case, it is stated that to let u be the denominator of integral which means let:
u = 1+sqrt(2x).
This can be rearrange into sqrt(2x) = u -1
Finding the derivative of u :  du = 1/sqrt(2x) dx
Substituting sqrt(2x)= u-1 into du = 1/sqrt(2x)dx becomes:
du = 1/(u-1)dx
Rearranged into (u-1) du =dx
Applying u-substitution using u = 1+sqrt(2x)  and (u-1)du = du :
int 1/(1+sqrt(2x)) dx = int (u-1)/u *du
Express into two separate fractions:
int (u-1)/u *du = int ( u/u -1/u)du
                      = int (1 - 1/u)du
Applying int (f(x) -g(x))dx = int f(x) dx - int g(x) dx :
int (1 - 1/u)du = int 1 du - int 1/udu
                       = u - ln|u| +C
Substitute u = 1+sqrt(2x)   to the u - ln|u| +C :
u - ln|u| +C =1+sqrt(2x) -ln|1+sqrt(2x) |+C
 
 
 
 

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...