Thursday, January 1, 2015

Single Variable Calculus, Chapter 3, 3.4, Section 3.4, Problem 29

Suppose that $H (\theta) = \theta \sin \theta$, find $H'(\theta)$ and $H''(\theta)$

Solving for $H'(\theta)$


$
\begin{equation}
\begin{aligned}

H'(\theta) =& \theta \frac{d}{d \theta} (\sin \theta) + \sin \theta \frac{d}{d \theta} (\theta)
&& \text{Using Product Rule}
\\
\\
H'(\theta) =& (\theta) (\cos \theta) + (\sin \theta) (1)
&& \text{Simplify the equation}
\\
\\
H'(\theta) =& (\theta) (\cos \theta) + (\sin \theta)
&& \text{}
\\
\\

\end{aligned}
\end{equation}
$



Solving for $H''(\theta)$


$
\begin{equation}
\begin{aligned}

H''(\theta) =& \theta \frac{d}{d \theta} (\cos \theta) + \cos \theta \frac{d}{d \theta} (\theta)+ \frac{d}{d \theta} (\sin \theta)
&& \text{Using Product Rule}
\\
\\
H''(\theta) =& \theta (- \sin \theta) + \cos \theta (1) + \cos \theta
&& \text{Simplify the equation}
\\
\\
H''(\theta) =& - \theta \sin \theta + 2 \cos \theta
&& \text{}
\\
\\

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...