Monday, September 22, 2014

y = tanh^-1(sqrt(x)) Find the derivative of the function

Derivative of a function f with respect to x is denoted as f'(x) or  y' .
To solve for derivative of y or (y') for the given problem: y = tanh^(-1)(sqrt(x)) , we follow the basic derivative formula for inverse hyperbolic function:
d/(dx)(tanh^(-1)(u))= ((du)/(dx))/(1-u^2) where |u|lt1 .
Let: u =sqrt(x)
Apply the Law of Exponent: sqrt(x) = x^(1/2)
Solve for the derivative of u using the Power Rule for derivative: d/(dx)x^n=n*x^(n+1) * d(x)
Then,
du=1/2x^(1/2-1)*1dx
du=1/2x^(-1/2) dx
Apply the Law of Exponent:
x^(-n)= 1/x^n.
du=1/(2x^(1/2)) dx 
Rearrange into:
(du)/(dx)=1/(2x^(1/2))
(du)/(dx)=1/(2sqrt(x))      
Apply the derivative formula, we get:
d/(dx)(tanh^(-1)(sqrt(x)))= ((1/(2sqrt(x))))/((1-(sqrt(x))^2))
                               =((1/(2sqrt(x))))/((1-x))
                               =(1/(2sqrt(x)))*1/((1-x))
                               =1/(2sqrt(x)(1-x))
Final answer:
d/(dx)(tanh^(-1)(sqrt(x)))=1/(2sqrt(x)(1-x))

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...