Tuesday, September 23, 2014

Single Variable Calculus, Chapter 2, 2.3, Section 2.3, Problem 61

Determine a number such that $\displaystyle \lim \limits_{x \to -2} \frac{3x^2 + ax + a + 3}{x^2 + x - 2}$ exists. If so, find the value of $a$ and the value of the limit.

The value of the denominator as $x$ approaches -2 will be equal to 0. In order for the limit to exist, we equate the numerator to 0.

$
\begin{equation}
\begin{aligned}
\lim\limits_{x \to -2 } (3x^2 + ax + a + 3) & = 0\\
3 \lim\limits_{x \to -2 } x^2 + a \lim\limits_{x \to -2 } x + \lim\limits_{x \to -2 } a + \lim\limits_{x \to -2 } 3 & = 0\\
3(-2)^2 + a(-2) + a + 3 & = 0\\
12 - 2a + a + 3 & = 0\\
15 - a & = 0\\
a & = 15
\end{aligned}
\end{equation}
$


By substituting the value of $a$, we can now determine the limit..



$
\begin{equation}
\begin{aligned}
\lim \limits_{x \to -2} \frac{3x^2 + ax + a + 3}{x^2 + x - 2} & = \lim \limits_{x \to -2} \frac{3x^2 + 15 x + 15 + 3}{x^2 + x -2}\\
& = \lim \limits_{x \to -2} \frac{(3x + 9)\cancel{(x + 2)}}{\cancel{(x + 2)}(x - 1)}\\
& = \lim \limits_{x \to -2} \frac{3x + 9}{x - 1} \\
& = \frac{3(-2)+9}{-2-1}\\
& = \frac{3}{-3}\\
& = -1

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...