Friday, March 7, 2014

Single Variable Calculus, Chapter 2, 2.4, Section 2.4, Problem 9

Find the values of $\delta$ that corresponds to (a)$ M = 1000$ and (b)$ M = 10,000$ for the $\lim \limits_{x \to \frac{\pi}{2}} \tan^2 x = \infty$

First, we will get the values of $x$ that intersect at the given curve and the line $y=1000$. Let $x_L$ and $x_R$
are the values of $x$ from the left and right of $\displaystyle \frac{\pi}{2}$ respectively.








$
\begin{equation}
\begin{aligned}

\tan^2 x =& 1000\\

\sqrt{\tan^2x} =& \sqrt{1000} = 10\sqrt{10}\\

x =& \tan^{-1 } [10\sqrt{10}]\\

x_L =& 1.5392 \text{ and } x_R = 1.602

\end{aligned}
\end{equation}
$


Now, we can determine the value of $\delta$ by checking the values of $x$ that would give a smaller distance to $\displaystyle \frac{\pi}{2}$.


$
\begin{equation}
\begin{aligned}
\frac{\pi}{2} - x_L = \frac{\pi}{2} - 1.5392 & = 0.0316\\
\frac{\pi}{2} - x_R = 1.602 - \frac{\pi}{2} & = 0.0312
\end{aligned}
\end{equation}
$


Hence,

$\quad \fbox{$\delta \leq 0.0312$}$

Using the same method above for $M = 10,000$ we get...





$
\begin{equation}
\begin{aligned}

\tan^2 x =& 10000\\

\sqrt{\tan^2x} =& \sqrt{10000} = 100\\

x =& \tan^{-1 } [100]\\

x_L =& 1.5608 \text{ and } x_R = 1.581

\end{aligned}
\end{equation}
$

Now, we can determine the value of $\delta$ by checking the values of $x$ that would give a smaller distance to $\displaystyle \frac{\pi}{2}$.


$
\begin{equation}
\begin{aligned}
\frac{\pi}{2} - x_L = \frac{\pi}{2} - 1.5608 & = 0.0099\\
\frac{\pi}{2} - x_R = 1.581- \frac{\pi}{2} & = 0.0102
\end{aligned}
\end{equation}
$


Hence,

$\quad \fbox{$\delta \leq 0.0099$}$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...