Saturday, March 15, 2014

Beginning Algebra With Applications, Chapter 6, 6.2, Section 6.2, Problem 60

Solve the system of equations: $
\begin{equation}
\begin{aligned}

0.8x-0.1y =& 0.3 \\
0.5x - 0.2y =& -0.5

\end{aligned}
\end{equation}
$


$
\begin{equation}
\begin{aligned}

0.5x -0.2y =& -0.5
\qquad \text{Solve equation 2 for } x
\\
\\
0.5x =& 0.2y - 0.5
\\
\\
x =& \frac{0.2y - 0.5}{0.5}
\\
\\
x =& \frac{0.2}{0.5} y - 1

\end{aligned}
\end{equation}
$




$
\begin{equation}
\begin{aligned}

0.8x - 0.1y =& 0.3
\qquad \text{Substitute } \frac{0.2}{0.5}y-1 \text{ for $x$ in equation 1}
\\
\\
0.8 \left( \frac{0.2}{0.5} y - 1 \right) - 0.1y =& 0.3
\\
\\
\frac{0.16}{0.5} y - 0.8 - 0.1y =& 0.3
\\
\\
0.32y - 0.1y =& 0.3+0.8
\\
\\
0.22y =& 1.1
\\
\\
y =& 5

\end{aligned}
\end{equation}
$


Substitute the value of $y$ in equation 2


$
\begin{equation}
\begin{aligned}

x =& \frac{0.2}{0.5} y - 1
\\
\\
x =& \frac{0.2}{0.5} (5) - 1
\\
\\
x =& 2-1
\\
\\
x =& 1

\end{aligned}
\end{equation}
$


The solution is $(1,5)$.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...