Saturday, March 22, 2014

Single Variable Calculus, Chapter 3, 3.2, Section 3.2, Problem 52

According to the definition, the left hand and right hand derivatives of $f$ at $a$ are defined by



$\displaystyle f'_- (a) = \lim\limits_{h \to 0^-} \frac{f(a+h) - f(a)}{h} \qquad \text{ and } \qquad
f'_+ (a) = \lim\limits_{h \to 0^+} \frac{f(a+h)-f(a)}{h} $


Suppose that these limits exists.
a.) Determine $f'_- (4)$ and $f'_+ (4)$ for the function
$
\displaystyle
f(x) = \left\{
\begin{array}{c}
0 & \text{if} & x \leq 0\\
5-x & \text{if} & 0 < x < 4\\
\frac{1}{5-x} & \text{if} & x \geq 4
\end{array}\right.
$

b.) Sketch the graph of $f$
c.) Where is $f$ discontinuous?
d.) Where is $f$ not differentiable?

a.)
For Left Hand,

$
\begin{equation}
\begin{aligned}
f'_- (x) &= \lim\limits_{h \to 0^-} \left[ \frac{5-(x+h)-(5-x)}{h}\right]\\
f'_- (x) &= \lim\limits_{h \to 0^-} \left[ \frac{\cancel{5}-\cancel{x}-h-\cancel{5}+\cancel{x}}{h}\right]\\
f'_- (x) &= \lim\limits_{h \to 0^-} -\frac{\cancel{h}}{\cancel{h}}\\
f'_- (x) &= \lim\limits_{h \to 0^-} -1\\
f'_- (4) &= -1
\end{aligned}
\end{equation}
$


For Right Hand,

$
\begin{equation}
\begin{aligned}
f'_+ (a) &= \lim\limits_{h \to 0^+} \frac{\left[\frac{1}{5-(x+h)}-\left(\frac{1}{5-x}\right)\right]}{h}\\
f'_+ (a) &= \lim\limits_{h \to 0^+} \frac{\frac{5-x-[5-(x+h)]}{(5-(x+h))(5-x)}}{h}\\
f'_+ (a) &= \lim\limits_{h \to 0^+} \frac{\frac{\cancel{5}-\cancel{x}-\cancel{5}+\cancel{x}+h}{(5-(x+h))(5-x)}}{h}\\
f'_+ (a) &= \lim\limits_{h \to 0^+} \frac{\cancel{h}}{(5-x-h)(5-x)\cancel{h}}\\
f'_+ (a) &= \lim\limits_{h \to 0^+} \frac{1}{(5-x-h)(5-x)}\\
f'_+ (a) &= \lim\limits_{h \to 0^+} \frac{1}{(5-x-0)(5-x)}\\
f'_+ (a) &= \lim\limits_{h \to 0^+} \frac{1}{(5-x)^2}\\
f'_+ (4) &= \frac{1}{(5-4)^2} = \frac{1}{(1)1^2} = 1\\
f'_+ (4) & = 1
\end{aligned}
\end{equation}
$

Therefore, $f'(4)$ doesn't exist since $f'_- (4) \neq f'_+ (4)$

b.)



c.) Based from the graph
The function $f$ is discontinuous at $x=0$ because of jump discontinuity.
Also, $f$ is discontinuous at $x=5$ because of infinite discontinuity

d.) The function $f$ is not differentiable at $x=0$ and $x=5$ because the function is discontinuous
at that points. Also, the function is not differentiable at $x=4$ since $f'_- (4) \neq f'_+ (4)$ based
from definition.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...