Saturday, March 22, 2014

int tan^5 (x/2) dx Find the indefinite integral

Indefinite integrals are written in the form of int f(x) dx = F(x) +C
 where: f(x) as the integrand
           F(x) as the anti-derivative function 
          C  as the arbitrary constant known as constant of integration
To evaluate the given integral problem int tan^5(x/2) dx , we may apply u-substitution by letting: u = x/2 then du =1/2 dx or  2du= dx .
The integral becomes:
int tan^5(x/2) dx =int tan^5(u)* 2 du
Apply the basic properties of integration: int c*f(x) dx= c int f(x) dx .
int tan^5(u)* 2 du =2 int tan^5(u)du
Apply integration formula for tangent function:  int tan^n(x)dx = (tan^(n-1)(x))/(n-1)- int tan^(n-2)(x)dx .
2 int tan^5(u)du= 2 *[(tan^(5-1)(u))/(5-1)- int tan^(5-2)(u)du]
                        = 2*[(tan^(4)(u))/(4)- int tan^(3)(u)du]
Apply another set integration formula for tangent function on  int tan^(3)(u)du .
int tan^(3)(u)du = (tan^(3-1)(u))/(3-1)- int tan^(3-2)(u)du
                         = (tan^(2)(u))/(2)- int tan^(1)(u)du
                         =(tan^(2)(u))/(2)-ln (sec(u))+C
Applying  int tan^(3)(u)du =(tan^(2)(u))/(2)-ln (sec(u))+C , we get:
2 int tan^5(u)du=2*[(tan^(4)(u))/(4)- int tan^(3)(u)du]
                        =2*[(tan^(4)(u))/(4)- [(tan^(2)(u))/(2)-ln (sec(u))]]+C
                        =2*[(tan^(4)(u))/(4)-(tan^(2)(u))/(2)+ln (sec(u))]+C
                       =(tan^(4)(u))/2-tan^(2)(u)+2ln (sec(u))+C
Plug-in u = x/2 on (tan^(4)(u))/2-tan^(2)(u)+2ln (sec(u))+C , we get the indefinite integral as:
int tan^5(x/2) dx=(tan^(4)(x/2))/2-tan^(2)(x/2)+2ln (sec(x/2))+C

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...