Tuesday, March 25, 2014

Intermediate Algebra, Chapter 4, Review Exercises, Section Review Exercises, Problem 16

Solve the system $
\begin{equation}
\begin{aligned}

4x - y =& 2 \\
3y + z =& 9 \\
x + 2z =& 7

\end{aligned}
\end{equation}
$. If a system is inconsistent or has dependent equations, say so.


$
\begin{equation}
\begin{aligned}

12x - 3y \phantom{+z} =& 6
&& 3 \times \text{ Equation 1}
\\\
3y + z =& 9
&& \text{Equation 2}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

\phantom{12x - 3y + z = 15}
\\
\hline

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

12x \phantom{-3y} + z =& 15
&& \text{Add; New Equation 2}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

12x + z =& 15
&& \text{Equation 2}
\\
x + 2z =& 7
&& \text{Equation 3}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

-24x - 2z =& -30
&& -2 \times \text{ Equation 2}
\\
x + 2z =& 7
&& \text{Equation 3}


\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

\phantom{-23x + 2z = -23}
\\
\hline

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

-23x + \phantom{+ 2z} =& -23
&& \text{Add}
\\
x =& 1
&& \text{Divide each side by $-23$}
\\
1 + 2z =& 7
&& \text{Substitute $x = 1$ in Equation 3}
\\
2z =& 6
&& \text{Subtract each side by $1$}
\\
z =& 3
&& \text{Divide each side by $2$}
\\
\\
4(1) - y =& 2
&& \text{Substitute $x = 1$ in Equation 1}
\\
4 - y =& 2
&& \text{Multiply}
\\
-y =& -2
&& \text{Subtract each side by $4$}
\\
y =& 2
&& \text{Divide each side by $-1$}


\end{aligned}
\end{equation}
$


The ordered triple is $(1,2,3)$.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...