Sunday, March 9, 2014

Precalculus, Chapter 1, 1.3, Section 1.3, Problem 60

Determine the equation of the line that is parallel to the line $y = -3x$ containing the point $(-1,2)$. Express your answer using the general form or the slope intercept form of the equation of a line, which ever you prefer.

Since the two lines are parallel, the slope of the line that we
need, equals the slope of the line $y = -3x$. The equation is in
slope intercept form where in the slope is $-3$. So the other also
has slope $-3$ and contains the point $(-1,2)$. By using Point
Slope Form to find the equation



$
\begin{equation}
\begin{aligned}

y - y_1 =& m (x- x_1)
&& \text{Point Slope Form}
\\
y - 2 =& -3 [x - (-1)]
&& \text{Substitute $m = -3, x = -1$ and $y = 2$}
\\
y =& -3x-3+2
&& \text{Simplify}
\\
y =& -3x-1
&& \text{Slope Intercept Form}
\\
\text{or} &
&&
\\
3x + y =& -1
&& \text{General Form}


\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...