Saturday, March 8, 2014

College Algebra, Chapter 7, 7.1, Section 7.1, Problem 24

The system of linear equations

$
\left\{
\begin{array}{ccccc}
& 2y & + z & = & 4 \\
x & + y & & = & 4 \\
3x & + 3y & - z & = & 10
\end{array}
\right.
$
has a unique solution.

We use Gauss-Jordan Elimination

Augmented Matrix

$\left[ \begin{array}{cccc}
0 & 2 & 1 & 4 \\
1 & 1 & 0 & 4 \\
3 & 3 & -1 & 10
\end{array} \right]$

$R_3 \leftrightarrow R_1$


$\left[ \begin{array}{cccc}
3 & 3 & -1 & 10 \\
1 & 1 & 0 & 4 \\
0 & 2 & 1 & 4
\end{array} \right]$

$3R_2 - R_1 \to R_2$

$\left[ \begin{array}{cccc}
3 & 3 & -1 & 10 \\
0 & 0 & 1 & 2 \\
0 & 2 & 1 & 4
\end{array} \right]$

$R_3 \leftrightarrow R_2$

$\left[ \begin{array}{cccc}
3 & 3 & -1 & 10 \\
0 & 2 & 1 & 4 \\
0 & 0 & 1 & 2
\end{array} \right]$

$\displaystyle \frac{1}{2} R_2$

$\left[ \begin{array}{cccc}
3 & 3 & -1 & 10 \\
0 & 1 & \displaystyle \frac{1}{2} & 2 \\
0 & 0 & 1 & 2
\end{array} \right]$

$\displaystyle \frac{1}{3}R_1$

$\left[ \begin{array}{cccc}
1 & 1 & \displaystyle \frac{-1}{3} & \displaystyle \frac{10}{3} \\
0 & 1 & \displaystyle \frac{1}{2} & 2 \\
0 & 0 & 1 & 2
\end{array} \right]$

$R_1 - R_2 \to R_1$

$\left[ \begin{array}{cccc}
1 & 0 & \displaystyle \frac{-5}{6} & \displaystyle \frac{4}{3} \\
0 & 1 & \displaystyle \frac{1}{2} & 2 \\
0 & 0 & 1 & 2
\end{array} \right]$

$\displaystyle R_1 + \frac{5}{6} R_3 \to R_1$

$\left[ \begin{array}{cccc}
1 & 0 & 0 & 3 \\
0 & 1 & \displaystyle \frac{1}{2} & 2 \\
0 & 0 & 1 & 2
\end{array} \right]$

$\displaystyle R_2 - \frac{1}{2} R_3 \to R_2$

$\left[ \begin{array}{cccc}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 2
\end{array} \right]$

We now have an equivalent matrix in reduced row-echelon form and the corresponding system of equations is


$
\left\{
\begin{equation}
\begin{aligned}

x =& 3
\\
y =& 1
\\
z =& 2

\end{aligned}
\end{equation}
\right.
$


Hence we immediately arrive at the solution $(3,1,2)$.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...