Tuesday, March 4, 2014

Calculus: Early Transcendentals, Chapter 1, Review Exercises, Section Review Exercises, Problem 24

Determine the inverse function of $\displaystyle f(x) = \frac{x + 1}{2x + 1}$

We first write $\displaystyle y = \frac{x + 1}{2x + 1}$

Then we solve this equation for $x$

$
\begin{equation}
\begin{aligned}
y(2x + 1) &= x + 1\\
\\
2xy + y &= x + 1\\
\\
2xy - x &= 1 - y \\
\\
x(2y - 1) &= 1 -y \\
\\
x &= \frac{1 - y}{2y - 1}
\end{aligned}
\end{equation}
$


Finally, we interchange $x$ and $y$
$\displaystyle y = \frac{1 - x}{2x - 1}$
Therefore, the inverse fraction is
$\displaystyle f^{-1}(x) = \frac{1 - x}{2x - 1}$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...