Sunday, November 3, 2013

int 2x/(x^2+6x+13) dx Find or evaluate the integral by completing the square

For the given integral: int 2x/(x^2+6x+13) dx , we may apply the basic integration property: int c*f(x) dx = c int f(x) dx .
int 2x/(x^2+6x+13) dx =2 int x/(x^2+6x+13) dx
To be able to evaluate this, we apply completing the square on x^2+6x+13 .
The x^2+6x+13 resembles ax^2+bx+c where:
a= 1 and b =6 that we can plug-into (-b/(2a))^2 .
(-b/(2a))^2= (-(6)/(2*1))^2
                 = (-6/2)^2
                = (-3)^2
                 =9
To complete the square, we add and subtract 9:
x^2+6x+13 +9 -9
Group them as: (x^2+6x+9)-9+13
Simplify: (x^2+6x+9)+4
Apply factoring for the perfect square trinomial: x^2+6x+9 = (x+3)^2
(x^2+6x+9)+4=(x+3)^2 + 4
Which means x^2+6x+13 =(x+3)^2 + 4 then the integral becomes:
2 int x/sqrt(x^2+6x+13) dx =2 int x/((x+3)^2 + 4) dx
 For the integral part, we apply u-substitution by letting:
u = x+3 then x= u-3 and  du =dx
Then,
2 int x/((x+3)^2 + 4) dx= 2 int (u-3)/(u^2 + 4) du
Apply the basic integration property: : int (u+v) dx = int (u) dx + int (v) dx .
2 int (u-3)/(u^2 + 4) du=2 [int u/(u^2 + 4) du - int 3/(u^2 + 4) du]
 
For the integration of int u/(u^2 + 4) du , let:
v=u^2+4 then dv =2u du or (dv)/2 = u du .
Then,
int u/(u^2 + 4) du = int ((dv)/2)/(v)
                        = 1/2 int (dv)/(v)
                        = 1/2ln|v|+C
Plug-in v= u^2+4, we get: int u/(u^2 + 4) du =1/2ln|u^2+4|+C
For the second integration: - int 3/(u^2 + 4) du , we follow the basic integration formula for inverse tangent function:
int (du)/(u^2+a^2) = 1/a arctan(u/a)+C
Then,
- int 3/(u^2 + 4) du =-3 int (du)/(u^2 + 2^2)
                              = -3 *1/2arctan(u/2)+C
                            =-3/2 arctan(u/2)+C
Combine the results, we get:
2 [int (u/(u^2 + 4) du - int 3/(u^2 + 4) du]
=2*[ 1/2ln|u^2+4|-3/2arctan(u/2)]+C
= ln|u^2+4| - 3arctan(u/2)+C
Plug-in u=x+3 to solve for the final answer:
int 2x/(x^2+6x+13) dx= ln|(x+3)^2+4| - 3arctan((x+3)/2)+C

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...