Sunday, November 24, 2013

Single Variable Calculus, Chapter 4, 4.7, Section 4.7, Problem 30

A Norman window has the shape of a rectangle surrounded by a semicircle. If the perimeter of the window is 30ft, find the dimensions of the window so that the greatest possible amount of light is admitted.




Let $P$ and $S$ be the perimeter and surface area of the window.

$
\begin{equation}
\begin{aligned}
P &= x + 2y + \frac{2\pi r}{2} = x + 2y + \pi r\\
\\
\text{since } r &= \frac{x}{2}\\
\\
P &= x + 2y + \pi \frac{x}{2} = x + x \frac{\pi}{2} + 2y
\end{aligned}
\end{equation}
$


Also, the Surface Area of the window is...

$
\begin{equation}
\begin{aligned}
s &= xy + \frac{\pi r^2}{2}; \quad r = \frac{x}{2}\\
\\
s &= xy + \frac{\pi \left( \frac{x}{2} \right)^2}{2} = xy + \frac{\pi x^2}{8}
\end{aligned}
\end{equation}
$


We have, $\displaystyle P = x + x \frac{\pi}{2} + 2y = 30$

Solving for $y$

$
\begin{equation}
\begin{aligned}
2y &= 30 - \left( \frac{2x + x \pi}{2} \right)\\
\\
y &= \frac{30 - \left( \frac{2x + x \pi}{2} \right) }{2} = \frac{60-2x+x\pi}{4}
\end{aligned}
\end{equation}
$


Substituting the value of $y$ to the equation of the Surface Area...
$\displaystyle s = x \left( \frac{60-2x-\pi x}{4} \right) + \frac{\pi x^2}{8} = \frac{60x-2x^2-\pi x^2}{4} + \frac{\pi x ^2}{8}$
Taking the derivative with respect to $x$, we have...

$
\begin{equation}
\begin{aligned}
s' &= \frac{60-4x - 2 \pi x}{4} + \frac{2 \pi x}{8}\\
\\
\text{when } s' &= 0 \\
\\
0 &= \frac{60-4x-2\pi x}{4} + \frac{2\pi x}{8}\\
\\
0 &= \frac{120-8x-4 \pi x + 2 \pi x}{8}\\
\\
0 &= 120-8x - 4\pi x + 2 \pi x\\
\\
0 &= 120 - 8x - 2 \pi x\\
\\
2 \pi x + 8x &= 120\\
\\
2x(\pi + 4) &= 120\\
\\
x &= \frac{60}{(\pi + 4)}\text{ft}
\end{aligned}
\end{equation}
$

so when, $\displaystyle x = \frac{60}{(\pi + 4)}$
$\displaystyle r = \frac{x}{2} = \frac{ \left( \frac{60}{\pi + 4}\right)}{2} = \frac{30}{(\pi + 4)}$ft

and,

$
\begin{equation}
\begin{aligned}
y &= \frac{60 - 2 \left( \frac{60}{\pi + 4} \right) - \left( \frac{60}{\pi + 4} \right) \pi}{4}\\
\\
y &= 4.20 \text{ft}
\end{aligned}
\end{equation}
$


Therefore, the greatest possible amount of height will be admitted if the area of the window is...

$
\begin{equation}
\begin{aligned}
s &= xy + \frac{\pi x^2}{8}\\
\\
s &= \left( \frac{60}{(\pi + 4)} \right) (4.20) + \frac{\pi \left( \frac{60}{\pi + 4} \right)^2}{8}\\
\\

\end{aligned}
\end{equation}\\
\boxed{s = 63\text{ft}^2}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...