Wednesday, November 27, 2013

Calculus and Its Applications, Chapter 1, 1.6, Section 1.6, Problem 116

Differentiate $\displaystyle f(t) = (t^5 + 3) \cdot \left( \frac{t^3 - 1}{t^3 + 1} \right)$

If we simplify the function first before we take the derivative, we get

$
\begin{equation}
\begin{aligned}
f(t) &= \frac{t^8 - t^5 + 3t^3 - 3}{t^3 + 1}
\end{aligned}
\end{equation}
$


Now, by applying Quotient Rule,

$
\begin{equation}
\begin{aligned}
f'(t) &= \frac{(t^3 + 1) \cdot \frac{d}{dt} \left( t^8 - t^5 + 3t^3 - 3 \right) - \left( t^8 - t^5 + 3t^3 - 3 \right) \cdot \frac{d}{dt} (t^3 + 1)}{(t^3 + 1)^2}\\
\\
f'(t) &= \frac{(t^3 + 1)\left( 8t^7 - 5t^4 + 9t^2 \right) - \left( t^8 - t^5 + 3t^3 - 3 \right) (3t^2) }{(t^3 + 1)^2}\\
\\
f'(t) &= \frac{8t^{10} - 5t^7 + 9t^5 + 8t^7 - 5t^4 + 9t^2 - 3t^{10} + 3t^7 - 9t^5 + 9t^2 }{(t^3 + 1)^2}\\
\\
f'(t) &= \frac{5t^{10} + 6t^7 - 5t^4 + 18t^2}{(t^3 + 1)^2}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...