Wednesday, November 27, 2013

Calculus: Early Transcendentals, Chapter 7, 7.4, Section 7.4, Problem 23

Integrated int10/[(x-1)(x^2+9)]dx
Solve for the variables A, B, and, C using the method of partial fractions.
10/[(x-1)(x^2+9)]=A/(x-1)+(Bx+C)/(x^2+9)
10=A(x^2+9)+(Bx+C)(x-1)
10=Ax^2+9A+Bx^2+Cx-Bx-C
10=(A+B)x^2+(C-B)x+(9A-C)
Equate coefficients and solve for A, B, and C.
0=A+B
A=-B

0=C-B
0=C+A

10=9A-C
0=A+C
10=10A
A=1
C=-1
B=-1

int10/[(x-1)(x^2+9)]dx=int[1/(x-1)+(-1x-1)/(x^2+9)]dx
=int1/(x-1)dx-intx/(x^2+9)dx-int1/(x^2+9)dx
The first integral matches the formint(du)/u=ln|u|+C
int1/(x-1)=ln|x-1|+C

Integrate the second integral using u-substitution.
Let u=x^2+9
(du)/dx=2x
dx=(du)/(2x)
-intx/(x^2+1)dx=-x/u*(du)/(2x)=-1/2ln|u|+C=-1/2ln|x^2+9|+C

The third integral matches the form int(dx)/(x^2+a^2)=1/atan^-1(x/a)+C
=-int1/(x^2+9)dx=-1/3tan^-1(x/3)+C


=int1/(x-1)dx-intx/(x^2+9)dx-int1/(x^2+9)dx
=ln|x-1|-1/2ln(x^2+9)-1/3tan^-1(x/3)+C

The final answer is:
=ln|x-1|-1/2ln(x^2+9)-1/3tan^-1(x/3)+C

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...