Proteins are important biomolecules that carry out various structural and enzymatic processes in cells and living things. They are also responsible for transporting other molecules in and out of cells, as well as acting as signal molecules for cell-cell communication. It makes sense that these molecules (and others such as lipids) are transported between different compartments within the cell itself, as well as from cells to their environment for the proteins to carry out their functions where they are needed.
Briefly, proteins are synthesized by ribosomes from mRNA templates and are then brought to where they are needed via protein targeting signals attached to these proteins. Proteins are brought into the nucleus and other organelles (such as the mitochondria), or remain in the cytoplasm, or are secreted out of the cell (via the secretory pathway involving the endoplasmic reticulum, the Golgi apparatus, and vesicles).
Being able to elucidate protein traffic within cells helps us understand how cellular processes work. This is very useful as it helps scientists identify what errors in the normal process are responsible for certain diseases. If proteins are not transported to their proper localizations, it could cause problems such as the loss of certain cellular functions that the protein facilitates and the excess accumulation of said protein, which could cause all sorts of complications (such is the case for Alzheimer's disease).
In terms of techniques used to study protein trafficking and localization, fluorescent tags and fluorescence microscopy are commonly used. Proteins of interests are usually exogenously expressed along with fluorescent tags (or other tags) and viewed microscopically to determine where they are localized after translation. Co-immunoprecipitation may also be used, as it determines whether a protein binds or interacts with the protein of interest. This can be used when trying to find what protein is involved in trafficking other proteins. Of course, mutation may also be used in support of co-immunoprecipitation. When a protein is mutated, it would be unable to perform its original function due to differences in amino acid composition and structure. This can confirm whether or not a suspected transport protein is indeed responsible for protein trafficking, as it cannot transport the protein once it has been mutated.
https://en.wikipedia.org/wiki/Protein_targeting
https://www.ncbi.nlm.nih.gov/books/NBK7286/
Wednesday, November 6, 2013
Can you explain the clinical significance of deciphering protein trafficking pathways within cells and the relevant molecular biology techniques to conduct such studies?
Subscribe to:
Post Comments (Atom)
Why is the fact that the Americans are helping the Russians important?
In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...
-
There are a plethora of rules that Jonas and the other citizens must follow. Again, page numbers will vary given the edition of the book tha...
-
The poem contrasts the nighttime, imaginative world of a child with his daytime, prosaic world. In the first stanza, the child, on going to ...
-
The given two points of the exponential function are (2,24) and (3,144). To determine the exponential function y=ab^x plug-in the given x an...
-
Robinson Crusoe, written by Daniel Defoe, is a novel. A novel is a genre defined as a long imaginative work of literature written in prose. ...
-
Hello! This expression is already a sum of two numbers, sin(32) and sin(54). Probably you want or express it as a product, or as an expressi...
-
Macbeth is reflecting on the Weird Sisters' prophecy and its astonishing accuracy. The witches were totally correct in predicting that M...
-
The play Duchess of Malfi is named after the character and real life historical tragic figure of Duchess of Malfi who was the regent of the ...
No comments:
Post a Comment