Sunday, March 11, 2012

Single Variable Calculus, Chapter 7, 7.8, Section 7.8, Problem 98

Find $\displaystyle \lim_{t \to 0^+} \frac{A(t)}{B(t)}$



$\displaystyle A(t) = \int^t_0 \sin (x^2) dx$ while $B(t)$, using the area of triangle, $\displaystyle B(t) = \frac{1}{2} (t) \left( \sin (t^2) \right)$
So,
$\displaystyle \lim_{t \to 0^+} \frac{A(t)}{B(t)} = \lim_{t \to 0} \frac{\int^t_0 \sin (x^2) dx}{\frac{1}{2}t \sin (t^2)} = \lim_{t \to 0} \frac{2 \int^t_0 \sin(x^2)dx}{t \sin (t^2)}$

By applying L'Hospital's Rule...

$
\begin{equation}
\begin{aligned}
\lim_{t \to 0} \frac{2 \int^t_0 \sin(x^2)dx}{t \sin (t^2)}&= \lim_{t \to 0} \frac{2 \frac{d}{dt}\left( \int^t_0 \sin (x^2) dx \right)}{\frac{d}{dt}\left( t \sin (t^2) \right)}\\
\\
&= \lim_{t \to 0} \frac{2 \sin (t^2)}{t\left( \cos (t^2) \right)(2t)+(1)\sin (t^2)}\\
\\
&= \lim_{t \to 0} \frac{2 \sin (t^2) }{ 2t^2 \cos t^2 + \sin t^2}
\end{aligned}
\end{equation}
$

If we evaluate the limit, we will still get an indeterminate form, so we must apply L'Hospital's Rule once more. Thus,

$
\begin{equation}
\begin{aligned}
\lim_{t \to 0} \frac{2 \sin (t^2) }{ 2t^2 \cos t^2 + \sin t^2} &= \lim_{t \to 0} \frac{2 \cos (t^2)(2t)}{2 \left[ t^2 (-\sin t^2) (2t) + (2t)\cos t^2 \right] + (\cos t^2)(2t)}\\
\\
&= \lim_{t \to 0} \frac{4t \cos t^2}{-4 t^3 \sin t^2 + 4t \cos t^2 + 2t \cos t^2}\\
\\
&= \lim_{t \to 0} \frac{2t\left(2\cos t^2\right)}{2t \left( -2t^2 \sin t^2 + 2 \cos t^2 + \cos t^2\right)}\\
\\
&= \lim_{t \to 0} \frac{2 \cos t^2}{3 \cos t^2 - 2 t^2 \sin t^2}\\
\\
&= \frac{2\cos (0)^2}{3 \cos (0)^2 - 2(0)^2 \sin (0)^2}\\
\\
&= \frac{2(1)}{3(1) - 0}\\
\\
&= \frac{2}{3}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...