Saturday, March 10, 2012

Single Variable Calculus, Chapter 5, 5.5, Section 5.5, Problem 48

Find the definite integral 40x1+2xdx

Let u=1+2x, then du=2dx, so dx=du2. When x=0,u=1 and when x=4,u=9. Thus,



40x1+2xdx=40u12udu240x1+2xdx=40u12udu240x1+2xdx=1440u1udu40x1+2xdx=1440uu1udu40x1+2xdx=1440u12u12du40x1+2xdx=14[u12+112+1u12+112+1]4040x1+2xdx=14[u3232u1212]4040x1+2xdx=14[2(9)3232(9)12]14[2(1)3232(1)12]40x1+2xdx=14(12)14(43)40x1+2xdx=3+41240x1+2xdx=3+1340x1+2xdx=9+1340x1+2xdx=103

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...