Wednesday, March 21, 2012

Precalculus, Chapter 1, 1.4, Section 1.4, Problem 40

Determine the standard form of the equation of a circle with endpoints of a diameter at $(4,3)$ and $(0,1)$.

Using the Distance Formula to find the diameter of the circle,


$
\begin{equation}
\begin{aligned}

D =& \sqrt{(3-1)^2 + (4-0)^2}
\\
D =& \sqrt{4 + 16}
\\
D =& \sqrt{20}

\end{aligned}
\end{equation}
$


We know that $\displaystyle r = \frac{D}{2}$, where $D$ is the diameter and $r$ is the radius. So we have


$
\begin{equation}
\begin{aligned}

r =& \frac{2 \sqrt{5}}{5}
\\
r =& \sqrt{5}

\end{aligned}
\end{equation}
$


To find the center of the circle, we use the Midpoint Formula


$
\begin{equation}
\begin{aligned}

M =& \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right)
\\
\\
=& \left( \frac{4+0}{2}, \frac{3+1}{2} \right)
\\
\\
=& (2,2)

\end{aligned}
\end{equation}
$


The standard from of the equation of a circle with center $(2,2)$ and radius $\sqrt{5}$ is


$
\begin{equation}
\begin{aligned}

(x-2)^2 + (y-2)^2 =& (\sqrt{5})^2
\\
(x-2)^2 + (y-2)^2 =& 5

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...