Tuesday, October 8, 2019

Single Variable Calculus, Chapter 4, 4.3, Section 4.3, Problem 18

a.) Determine the critical numbers of $f(x) = x^4 ( x- 1 )^3.$
b.) What does the Second Derivative Test tell you about the behaviour of $f$ at these critical numbers?
c.) What does First Derivative Test tell you?

a.) If $f(x) = x^4(x-1)^3$, then by using Product Rule and Chain Rule.

$
\begin{equation}
\begin{aligned}
f'(x) &= x^4 \left(3(x-1)^2 \right) + 4x^3 (x-1)^3 = 3x^4(x-1)^2 + 4x^3 (x-1)^3\\
\\
f''(x) &= 12x^3 (x-1)^2 + 3x^4(2(x-1)) + 12x^2 ( x- 1 )^3 + 4x^3 (3(x-1)^2)\\
\\
f''(x) &= 24x^3(x-1)^2 + 6x^4 (x-1) + 12x^2 (x-1)^3
\end{aligned}
\end{equation}
$


Which can be simplified as,
$f''(x) = 6x^2 \left[ 7x^3 - 15x^2 + 10 x - 2 \right]$

To determine the critical numbers, we set $f'(x) = 0$, so...

$
\begin{equation}
\begin{aligned}
f'(x) = 0 &= 3x^4 (x -1)^2 + 4x^3(x-1)^3\\
\\
0 &= x^3(x-1)^2 \left[ 3x + 4 (x-1) \right]
\end{aligned}
\end{equation}
$



We have,
$ x^3 = 0, \quad (x-1)^2 = 0, \quad $ and $\quad 3x + 4 (x-1) = 0$

Therefore, the critical numbers are, $x =0$, $x= 1$ and $\displaystyle x = \frac{4}{7}$

If we evaluate $f''(x)$ at the critical numbers, we get...


$
\begin{equation}
\begin{aligned}
\text{when } x &= 0,\\
\\
f''(0) &= 6(0)^2 \left[ 7(0)^3 - 15 (0)^2 + 10(0) - 2\right]\\
\\
f''(0) &= 0\\
\\
\text{when } x &= 1,\\
\\
f''(1) &= 6(1)^2 \left[ 7(1)^3 - 15 (1)^2 + 10(1) - 2\right]\\
\\
f''(1) &= 0\\
\\
\text{when } x &= \frac{4}{7},\\
\\
f''\left(\frac{4}{7}\right) &= 6\left(\frac{4}{7}\right)^2 \left[ 7\left(\frac{4}{7}\right)^3 - 15 \left(\frac{4}{7}\right)^2 + 10\left(\frac{4}{7}\right) - 2\right]\\
\\
f''\left(\frac{4}{7}\right) &= 0
\end{aligned}
\end{equation}
$


Since $f''(1) = f''(0) = 0$. It means that $x = 0$ and $x = 1 $ are inflection points and since $\displaystyle f''\left(\frac{4}{7}\right) > 0$, it means that $\displaystyle x = \frac{4}{7}$ is a local minimum.

c.) By using First Derivative Test, if we divide $f$ on the interval:

$
\begin{array}{|c|c|c|}
\hline\\
\text{Interval} & f' & f\\
\hline\\
x < 0 & + & \text{increasing on } (-\infty, 0)\\
\hline\\
0 < x < \frac{4}{7} & - & \text{decreasing on } \left(0,\frac{4}{7}\right)\\
\hline\\
\frac{4}{7} < x < 1 & + & \text{increasing on } \left(\frac{4}{7},1\right)\\
\hline\\
x > 1 & + & \text{increasing on } (1, \infty)\\
\hline
\end{array}
$


Since the function changes from positive to negative at $x = 0$, we can say that 0 is a local maximum. Also,
we have $\displaystyle \frac{4}{7}$ as a local minimum since the function changes from negative to positive at the point. We can see
in the table that 1 is an inflection point since the sign of $f'$ did not vary.

Notice that the answer in part(b) differs from part(a) because of the repeating roots of $f'(x)$.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...