Tuesday, October 1, 2019

College Algebra, Chapter 5, Review Exercise, Section Review Exercise, Problem 66

Evaluate the equaiton $\log x + \log (x + 1) = \log 12 $. Find the exact solution, otherwise use a calculator.

$
\begin{equation}
\begin{aligned}
\log x + \log (x + 1) &= \log 12 \\
\\
\log x ( x + 1 ) &= \log 12 && \text{Laws of Logarithm }\log_a AB = \log_a A + \log_a B\\
\\
e^{\log x(x+1)} &= e^{\log 12} && \text{Raise $e$ to each side}\\
\\
x(x+1) &= 12 && \text{Properties of log}\\
\\
x^2 + x &= 12 && \text{Distributive property}\\
\\
x^2 + x - 12 & = 0 && \text{Subtract 12 }\\
\\
(x + 4)(x - 3) &= 0 && \text{Factor}
\end{aligned}
\end{equation}
$

Solve for $x$

$
\begin{equation}
\begin{aligned}
x + 4 &= 0 &\text{and}&& x -3 &= 0\\
\\
x &= -4 &&& x &= 3
\end{aligned}
\end{equation}
$

The only solution in the given equation is $x = 3$, since $x = -4$ will give a negative value.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...