Thursday, October 3, 2019

College Algebra, Chapter 5, 5.4, Section 5.4, Problem 36

Solve the equation $x^2 e^x + x e^x - e^x = 0$

$
\begin{equation}
\begin{aligned}
x^2 e^x + x e^x - e^x &= 0\\
\\
e^x(x^2+x-1) &= 0 && \text{Factor out common terms}\\
\\
x^2 + x - 1 &= 0 && \text{Divide by $e^x$ (because $e^x \neq 0$)}
\end{aligned}
\end{equation}
$

Solve for $x$, using quadratic formula. We get

$
\begin{equation}
\begin{aligned}
x &= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\\
\\
x &= \frac{-1\pm \sqrt{(1)^2 - 4(1)(-1)}}{2(1)}\\
\\
x &= \frac{-1\pm\sqrt{1+4}}{2}\\
\\
x &= \frac{-1\pm \sqrt{5}}{2}
\end{aligned}
\end{equation}
$

So the solution of the given equation are $\displaystyle x = \frac{-1+ \sqrt{5}}{2} \text{ and } x = \frac{-1-\sqrt{5}}{2}$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...