Thursday, July 26, 2018

Single Variable Calculus, Chapter 7, 7.2-2, Section 7.2-2, Problem 62

Find the derivative of y=4x2+1x21 by using logarithmic differentiation.

By taking logarithms of both sides..

lny=ln4x2+1x21

If we apply the Laws of logarithm, we have


lny=14lnx2+1x21recall that lnxk=klnxlny=14[ln(x2+1)ln(x21)]recall that lnxy=lnxlnylny=14[ln(x2+1)ln(x1)(x+1)]lny=14[ln(x2+1)(ln(x1)+ln(x+1))]lny=14ln(x2+1)14ln(x1)14ln(x+1)


By taking the derivative implicitly, we have..


ddx(y)y=14(ddx(x2+1)x2+1)14(ddx(x1)x1)14(ddx(x+1)x+1)dydxy=14(2xx2+1)14(1x1)14(1x+1)dydx=y4(2xx2+11x11x+1)dydx=4x2+1x214(2xx2+11x11x+1)

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...