Friday, July 13, 2018

Single Variable Calculus, Chapter 6, 6.2, Section 6.2, Problem 30

Find the value generated by rotating $\mathscr{R}_3$ about $BC$



If you rotate $\mathscr{R}_3$ about $BC$, by using vertical strip, you will form a circular washer with radius $1 - x^3$ and their radius $1 - \sqrt{x}$. Thus, the cross sectional area can be computed by subtracting the area of the outer circle to the inner circle. $A_{\text{washer}} = A_{\text{outer}} - A_{\text{inner}} = \pi ( 1 - x^3)^2 - \pi (1-\sqrt{x}^2)$
Therefore, the value is

$
\begin{equation}
\begin{aligned}
V &= \int^1_0 \left[\pi(1-x^3)^2 - \pi (1- \sqrt{x})^2 \right]dx\\
\\
V &= \pi \int^1_0 \left( 1 - 2x^3 + x^6 - 1 + 2\sqrt{x} - x \right) dx\\
\\
V &= \pi \left[ x - \frac{2x^4}{4} + \frac{x^7}{7} - x + \frac{2x^{\frac{3}{2}}}{\frac{3}{2}} - \frac{x^2}{2} \right]^1_0\\
\\
V &= \pi \left[ x - \frac{2x^4}{4} + \frac{x^7}{7} - x + \frac{2x^{\frac{3}{2}}}{\frac{3}{2}} - \frac{x^2}{2} \right]^1_0\\
\\
V &= \frac{10\pi}{21} \text{ cubic units}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...