Wednesday, July 25, 2018

log_4(-x)+log_4(x+10)=2 Solve the equation. Check for extraneous solutions.

To evaluate the given equation log_4(-x)+log_4(x+10)=2 , we may apply the logarithm property: log_b(x)+log_b(y)=log_b(x*y) .
log_4(-x)+log_4(x+10)=2
log_4((-x)*(x+10))=2
log_4(-x^2-10x)=2
To get rid of the "log" function, we may apply the logarithm property: b^(log_b(x))=x.
Raise both sides by base of 4 .
4^(log_4(-x^2-10x))=4^2
-x^2-10x=16
Add x^2 and 10x on both sides of the equation to simplify in standard form: ax^2+bx+c= 0.
-x^2-10x+x^2+10x=16+x^2+10x
0=16+x^2+10x orx^2+10x+16=0.
Apply factoring on the trinomial.
(x+2)(x+8)=0
Apply zero-factor property to solve for x by equating each factor to 0 .
x+2=0
x+2-2=0-2
x=-2
and
x+8=0
 x+8-8=0-8 
x=-8
Checking: Plug-in each x on log_4(-x)+log_4(x+10)=2 .
Let x=-2 on  log_4(-x)+log_4(x+10)=2 .
log_4(-(-2))+log_4(-2+10)=?2
log_4(2)+log_4(8)=?2
log_4(2*8)=?2
log_4(16)=?2
log_4(4^2)=?2
2log_4(4)=?2
2*1=?2
2=2        TRUE
Let x=-8 on log_4(-x)+log_4(x+10)=2.
log_4(-(-8))+log_4(-8+10)=?2
log_4(8)+log_4(2)=?2
log_4(8*2)=?2
log_4(16)=?2
2=2        TRUE
Therefore, there are no extraneous solutions.
Both solved x-values: x=-2 and x=-8 are real solution of the equation log_4(-x)+log_4(x+10)=2 .

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...