Sunday, December 3, 2017

Single Variable Calculus, Chapter 2, 2.3, Section 2.3, Problem 30

Determine the $\displaystyle \lim \limits_{x \to -4} \frac{\sqrt{x^2 + 9} - 5}{x + 4}$, if it exists.


$
\begin{equation}
\begin{aligned}
& \lim \limits_{x \to -4} \frac{\sqrt{x^2 + 9} - 5}{x + 4}
\cdot \frac{\sqrt{x^2 + 9} + 5}{x + 4}
= \lim \limits_{x \to -4} \frac{x^2 + 9 -25}{(x + 4)(\sqrt{x^2 + 9} + 5)}
&& \text{ Multiply both numerator and denominator by $\sqrt{x^2 + 9} + 5$ then simplify.}\\
\\
& \lim \limits_{x \to -4} \frac{x^2 - 16}{(x + 4) (\sqrt{x^2 + 9} + 5)}
=\lim \limits_{x \to -4} \frac{\cancel{(x + 4)}(x - 4)}{\cancel{(x + 4)}(\sqrt{x^2 + 9} + 5)}
&& \text{ Get the factor and cancel out like terms.}
\\
& \lim \limits_{x \to -4} \frac{x - 4}{\sqrt{x^2 + 9} + 5}
= \frac{-4 - 4}{\sqrt{(-4)^2 + 9} + 5}
= \frac{-8}{\sqrt{16+9}+5}
= \frac{-8}{5+5}
= \frac{-8}{10}
= -\frac{4}{5}
&& \text{ Substitute value of $x$ and simplify}\\
\\
& \fbox{$ \lim \limits_{x \to -4} \displaystyle \frac{\sqrt{x^2 + 9} - 5}{x + 4} = -\frac{4}{5}$}


\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...