Saturday, October 7, 2017

Intermediate Algebra, Chapter 1, 1.3, Section 1.3, Problem 78

Simplify $\displaystyle \frac{\displaystyle -4 \left( \frac{12 - (-8)}{3 \cdot 2 + 4} \right) - 5 (-1-7) }{-9- (-7) - [-5-(-8)]}$ using the Order of Operations.


$
\begin{equation}
\begin{aligned}

\frac{\displaystyle -4 \left( \frac{12 - (-8)}{3 \cdot 2 + 4} \right) - 5 (-1-7) }{-9- (-7) - [-5-(-8)]} =& \frac{\displaystyle -4 \left( \frac{12-(-8)}{6+4} \right) -5(-1-7) }{-9-(-7) - [3]}
&& \text{Work separately above and below the fraction bar}
\\
\\
=& \frac{\displaystyle -4 \left( \frac{20}{10} \right) - 5(-8) }{-9-(-7) - 3}
&& \text{Work inside parentheses first}
\\
\\
=& \frac{-8 - 5 (-8)}{-9-(-7) - 3}
&& \text{Multiply}
\\
\\
=& \frac{-8 + 40}{-9 - (-7) - 3}
&& \text{Multiply}
\\
\\
=& \frac{32}{-2-3}
&& \text{Work separately above and below the fraction bar}
\\
\\
=& \frac{32}{-5}
&& \text{Subtract}
\\
\\
=& \frac{-32}{5}


\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...