Saturday, October 14, 2017

Single Variable Calculus, Chapter 8, 8.1, Section 8.1, Problem 54

Find the area bounded by the curves $y = 5 \ln x$, $y = x \ln x$



First, we need to get the upper and lower limits of the integral by simply getting the points of intersections of the curves. So,

$
\begin{equation}
\begin{aligned}
5 \ln x &= x \ln x\\
\\
5 \ln x &= x \ln x = 0\\
\\
\ln x( 5- x ) &= 0
\end{aligned}
\end{equation}
$


We have,
$\ln x = 0$ and $ 5- x = 0$
Solving for $x$
$e^{\ln x} = e^0$
$x =1$ and $x =5$

Then, by using vertical strips

$
\begin{equation}
\begin{aligned}
A &= \int^b_a \left( y_{\text{upper}} - y_{\text{lower}} \right) dx\\
\\
A &= \int^5_1 (5 \ln x - x \ln x ) dx\\
\\
A &= \int^5_1 \ln x (5 -x ) dx
\end{aligned}
\end{equation}
$


To evaluate the area, we must use integration by parts, so
If we let $u = \ln x$ and $dv = (5 -x) dx$. Then,
$\displaystyle du = \frac{1}{x} dx \text{ and } v = 5x - \frac{x^2}{2}$

So,

$
\begin{equation}
\begin{aligned}
A = \int^5_1 \ln x (5-x) dx &= uv - \int v du = (\ln x) \left( 5x - \frac{x^2}{2} \right) \int \left( 5x - \frac{x^2}{2} \right) \left( \frac{1}{x} \right) dx\\
\\
&= \ln x \left( 5x - \frac{x^2}{2} \right) - \int \left( 5 - \frac{x}{2} \right) dx\\
\\
&= \ln x \left( 5x - \frac{x^2}{2} \right) - \left(5x - \frac{x^2}{2} \left( \frac{1}{2} \right) \right)
\end{aligned}
\end{equation}
$


Evaluate from $x = 1$ to $x = 5$, we have...
$\displaystyle A = \frac{25}{2} \ln 5 - 14$ square units

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...