Friday, October 27, 2017

Calculus and Its Applications, Chapter 1, 1.7, Section 1.7, Problem 48

Determine dydu,dudx and dydx if y=u+1u1 and u=1+x.

We first find dydu and dudx.



dydu=(u1)ddu(u+1)(u+1)ddu(u1)(u1)2 and dudx=ddx(1)+ddx(x)12=(u1)(1)(u+1)(1)(u1)2=0+12(x)12=u1u1(u1)2=12x=2(u1)2


Then,


dydx=dydududx=2(u1)212x=22(u1)2x=1(1+x1)2xSubstitute 1+x for u=1(x)2x=1xx

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...