Tuesday, October 17, 2017

Single Variable Calculus, Chapter 2, 2.5, Section 2.5, Problem 9

Suppose $f$ and $g$ are continuous functions with $f(3) = 5 $ and $\lim \limits_{x \to 3} [2 f(x) - g(x)] = 4$ , find $g(3)$



Based from the theorem, if $f$ is continuous at number a

$\lim \limits_{x \to a} f(x) = f(a)$




$
\begin{equation}
\begin{aligned}
& \text{Therefore}\\
& \phantom{x} & & \lim \limits_{x \to 3} f(x) = f(3) = 5\\
& \phantom{x} & & \lim \limits_{x \to 3} [2f(x) - g(x)] = 4\\
& \phantom{x} & & 2 \lim \limits_{x \to 3} f(x) - \lim \limits_{x \to 3} g(x) = 4\\
& \phantom{x} & & \lim \limits_{x \to 3} g(x) = 2(5) - 4 = 10 - 4 = 6\\
& \text{Again, from the definition}\\
& \phantom{x} & & \lim \limits_{x \to 3} g(x) = g(3) = 6\\
& \text{Hence, }\\
& \phantom{x}& & g(3) = 6
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...