Recall that int f(x) dx = F(x) +C where:
f(x) as the integrand function
F(x) as the antiderivative of f(x)
C as the constant of integration..
For the given problem, the integral: int x/sqrt(9+8x^2-x^4)dx
does not yet resemble any formula from table of integrals.
To evaluate this, we are to apply u-substitution by letting:
u = x^2 then u^2 = x^4 and du = 2x dx or (du)/2 = x dx .
Then the integral becomes:
int x/sqrt(9+8x^2-x^4)dx =int x dx/sqrt(9+8x^2-x^4)
=int ((du)/2)/sqrt(9+8u-u^4)
Apply the basic property of integration: int c f(x) dx = c int f(x) dx to factor out 1/2 .
int ((du)/2)/sqrt(9+8u-u^4) = 1/2int (du)/sqrt(9+8u-u^4)
The integral does not yet resembles any integration formula.
For further step, we apply completing the square on the part: 9+8u-u^2 .
Completing the square:
Factoring out -1 from 9+8u-u^2 becomes: (-1)(-9-8u^2 +u^2) or -(u^2 -8u-9) .
u^2 -8u-9 resembles ax^2 +bx+c where:
a=1 , b= -8 and c=9 .
To complete the square we add and subtract (-b/(2a))^2 .
Plug-in the value of a=1 and b=-8 in (-b/(2a))^2 :
(-b/(2a))^2 =(-(-8)/(2*1))^2
=(8/2)^2
=4^2
=16.
Adding and subtracting -16 inside the ():
-(u^2 -8u-9) =-(u^2 -8u-9+16-16)
To move out "-9" and "-16" outside the (), we distribute the negative sign or (-1).
-(u^2 -8u-9+16-16) =-(u^2 -8u-9+16) +(-1)(-9)+ (-1)(-16)
=-(u^2 -8u-9+16) +9+ 16
=-(u^2 -8u-9+16) +25
Factor out the perfect square trinomial: u^2 -8u+16 = (u-4)^2
-(u^2 -8u+16) + 16 = -(u-4)^2+25
Then it shows that 9+8u-u^4 =-(u-4)^2+25
=25-(u-4)^2
= 5^2 -(u-4)^2
Then,
1/2 int (du)/sqrt(9+8u-u^4)= 1/2int (du)/sqrt(5^2-(u-4)^2)
The integral part resembles the basic integration formula for inverse sine function:
int (du)/sqrt(a^2-u^2)= arcsin(u/a)+C
Applying the formula, we get:
1/2int (du)/sqrt(5^2-(u-4)^2) =1/2 arcsin ((u-4)/5) +C
Plug-in u =x^2 for the final answer:
int x/sqrt(9+8x^2-x^4)dx =1/2 arcsin ((x^2-4)/5) +C
Wednesday, October 4, 2017
int x / sqrt(9 + 8x^2 - x^4) dx Find or evaluate the integral by completing the square
Subscribe to:
Post Comments (Atom)
Why is the fact that the Americans are helping the Russians important?
In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...
-
Lionel Wallace is the subject of most of "The Door in the Wall" by H.G. Wells. The narrator, Redmond, tells about Wallace's li...
-
In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...
-
The poem contrasts the nighttime, imaginative world of a child with his daytime, prosaic world. In the first stanza, the child, on going to ...
-
Friar Lawrence plays a significant role in Romeo and Juliet's fate and is responsible not only for secretly marrying the two lovers but ...
-
There are a plethora of rules that Jonas and the other citizens must follow. Again, page numbers will vary given the edition of the book tha...
-
Resourceful: Phileas Fogg doesn't let unexpected obstacles deter him. For example, when the railroad tracks all of a sudden end in India...
-
If by logos you mean argument by logic or the use of facts to prove a point, then there are plenty of examples in the book. Take, for instan...
No comments:
Post a Comment