Wednesday, October 4, 2017

int x / sqrt(9 + 8x^2 - x^4) dx Find or evaluate the integral by completing the square

Recall  that int f(x) dx = F(x) +C where:
f(x) as the integrand function
F(x) as the antiderivative of f(x)
C as the constant of integration..
 For the given problem, the integral: int x/sqrt(9+8x^2-x^4)dx
does not yet resemble any formula from table of integrals.
 
To evaluate this, we are to apply u-substitution by letting:
u = x^2 then u^2 = x^4  and  du = 2x dx  or (du)/2 = x dx .
Then the integral becomes:
int x/sqrt(9+8x^2-x^4)dx =int x dx/sqrt(9+8x^2-x^4)
                                      =int ((du)/2)/sqrt(9+8u-u^4)
Apply the  basic  property of integration: int c f(x) dx = c int f(x) dx to factor out  1/2 .
int ((du)/2)/sqrt(9+8u-u^4) = 1/2int (du)/sqrt(9+8u-u^4)
 The integral does not yet resembles any integration formula.
For further step, we apply  completing the square on the part: 9+8u-u^2 .
Completing the square:
Factoring out -1 from 9+8u-u^2 becomes: (-1)(-9-8u^2 +u^2) or -(u^2 -8u-9) .
u^2 -8u-9 resembles ax^2 +bx+c where:
a=1 , b= -8 and c=9 .
To complete the square we add and subtract (-b/(2a))^2 .
Plug-in the value of a=1 and b=-8 in  (-b/(2a))^2 :
(-b/(2a))^2 =(-(-8)/(2*1))^2
             =(8/2)^2
              =4^2
              =16.
Adding and subtracting -16 inside the ():
-(u^2 -8u-9) =-(u^2 -8u-9+16-16)
 To move out "-9" and "-16" outside the (), we distribute the negative sign or (-1).
-(u^2 -8u-9+16-16) =-(u^2 -8u-9+16) +(-1)(-9)+ (-1)(-16)  
                                         =-(u^2 -8u-9+16) +9+ 16
                                         =-(u^2 -8u-9+16) +25
Factor out the perfect square trinomial: u^2 -8u+16 = (u-4)^2
-(u^2 -8u+16) + 16 = -(u-4)^2+25
Then it shows that 9+8u-u^4 =-(u-4)^2+25
                                               =25-(u-4)^2
                                                 = 5^2 -(u-4)^2
Then,
1/2 int (du)/sqrt(9+8u-u^4)= 1/2int (du)/sqrt(5^2-(u-4)^2)
 The integral part resembles the basic integration formula for inverse sine function:
int (du)/sqrt(a^2-u^2)= arcsin(u/a)+C
Applying the formula, we get:
1/2int (du)/sqrt(5^2-(u-4)^2) =1/2 arcsin ((u-4)/5) +C
Plug-in u =x^2  for the final answer:
int x/sqrt(9+8x^2-x^4)dx =1/2 arcsin ((x^2-4)/5) +C 

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...