Sunday, September 3, 2017

Single Variable Calculus, Chapter 3, 3.4, Section 3.4, Problem 24

Determine the equation of the tangent line to the curve $\displaystyle y = \frac{1}{\sin x + \cos x}$ at the given point $(\displaystyle 0,1)$


$
\begin{equation}
\begin{aligned}

y' =& \frac{(\sin x + \cos x) \displaystyle \frac{d}{dx} (1) - \left[ \frac{d}{dx} (\sin x + \cos x) \right]}{(\sin x + \cos x)^2}
&& \text{Using Quotient Rule}
\\
\\
y' =& \frac{(\sin x + \cos x) (0) - (\cos x - sin x)}{(\sin x + \cos x)^2}
&&
\\
\\
y' =& \frac{\sin x - \cos x}{(\sin x + \cos x)^2}
&&
\\
\\
& \text{Let $y' = m_T$ (slope of the tangent line)}
&&
\\
\\
y' = m_T =& \frac{\sin (0) - \cos (0)}{[\sin (0) + \cos (0)^2]}
&& \text{Substitute value of $x$}
\\
\\
m_T =& \frac{0 - 1}{(0 + 1)^2}
&&
\\
\\
m_T =& -1

\end{aligned}
\end{equation}
$


Using Point Slope Form substitute the values of $x, y$ and $m_T$


$
\begin{equation}
\begin{aligned}

y - y_1 =& m (x - x_1)
\\
\\
y - 1 =& -1 (x - 0)
\\
\\
y - 1 =& -x
\\
\\
y =& -x + 1
\\
\\
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...