Tuesday, September 26, 2017

y' + 3y = e^(3x) Solve the first-order differential equation

Given y'+3y=e^(3x)
when the first order linear ordinary differential equation has the form of
y'+p(x)y=q(x)
then the general solution is ,
y(x)=((int e^(int p(x) dx) *q(x)) dx +c)/e^(int p(x) dx)
so,
y'+3y=e^(3x)--------(1)
y'+p(x)y=q(x)---------(2)
on comparing both we get,
p(x) = 3 and q(x)=e^(3x)
so on solving with the above general solution we get:
y(x)=((int e^(int p(x) dx) *q(x)) dx +c)/e^(int p(x) dx)
=((int e^(int 3 dx) *(e^(3x))) dx +c)/e^(int 3 dx)
first we shall solve
e^(int 3 dx)=e^(3x)     
so
proceeding further, we get
y(x) =((int e^(int 3 dx) *(e^(3x))) dx +c)/e^(int 3 dx)
=((int e^(3x) *(e^(3x))) dx +c)/e^(3x)
=((int e^(6x) ) dx +c)/e^(3x)
= (e^(6x)/6 +c)/e^(3x)
=(e^(6x)/6 +c)*e^(-3x)
so y(x)=(e^(6x)/6 +c)*e^(-3x)

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...