Sunday, September 17, 2017

Single Variable Calculus, Chapter 4, 4.1, Section 4.1, Problem 52

Determine the absolute maximum and absolute minimum values of $\displaystyle f(x) = \frac{x^2-4}{x^2+4}$ on the interval $[-4,4]$.

Taking the derivative of $f(x)$ using Quotient Rule we have,

$
\begin{equation}
\begin{aligned}
f'(x) &= \frac{\left( x^2 + 4 \right)(2x) - \left( x^2 - 4\right) (2x)}{\left( x^2 + 4\right)^2}\\
\\
f'(x) &= \frac{\cancel{2x^3} + 8x - \cancel{2x^3} + 8x }{\left( x^2 + 4 \right)^2}\\
\\
f'(x) &= \frac{16x}{\left( x^2 + 4 \right)^2}
\end{aligned}
\end{equation}
$

Solving for critical numbers, when $f'(x) = 0$


$
\begin{equation}
\begin{aligned}
0 &= \frac{16x}{\left( x^2 + 4 \right)^2}\\
\\
0 &= 16 x\\
\\
x &= 0
\end{aligned}
\end{equation}
$



We have either absolute maximum and minimum values at $x = 0$
So,

$
\begin{equation}
\begin{aligned}
f(0) &= \frac{0^2 - 4 }{0^2 + 4}\\
\\
f(0) &= -1
\end{aligned}
\end{equation}
$

Evaluating $f(x)$ at end points $x = -4$ and $x = 4$

$
\begin{equation}
\begin{aligned}
\text{when } x &= -4,\\
\\
f(-4) &= \frac{(-4)^2 -4 }{(-4)^2 + 4}\\
\\
f(-4) &= \frac{3}{5}\\
\\
\\
\\
\text{when } x &= 4,\\
\\
f(4) &= \frac{(4)^2 - 4}{(4)^2 + 4}\\
\\
f(4) &= \frac{3}{5}
\end{aligned}
\end{equation}
$

Therefore, we have absolute maximum value at $\displaystyle f(-4) = f(4) = \frac{3}{5}$ and the absolute minimum value at $f(0) = -1 $ on the interval $[-4,4]$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...