Friday, September 22, 2017

College Algebra, Chapter 1, 1.1, Section 1.1, Problem 48

The equation $\displaystyle \frac{1}{x+3} + \frac{5}{x^2 - 9} = \frac{2}{x-3} $ is either linear or equivalent to a linear equation. Solve the equation

$
\begin{equation}
\begin{aligned}
\frac{1}{x+3} + \frac{5}{x^2 - 9} &= \frac{2}{x-3} && \text{Subtract both sides by } \frac{2}{x-3}\\
\\
\frac{1}{x+3} + \frac{5}{x^2- 9} - \frac{2}{x-3} &= \frac{2}{x-3} - \frac{2}{x-3} && \text{Simplify}\\
\\
\frac{1}{x+3} + \frac{5}{(x^2-9)} - \frac{2}{x-3} &= 0 && \text{Expand the denominator of 2nd term}\\
\\
\frac{1}{x+3} + \frac{5}{(x+3)(x-3)} - \frac{2}{x-3} &= 0 && \text{Get the LCD}\\
\\
\frac{x-3+5-2(x+3)}{(x+3)(x-3)} &= 0 && \text{Simplify}\\
\\
\frac{x-3+5-2x-6}{(x+3)(x-3)} &= 0 && \text{Combine like terms}\\
\\
\frac{-x-4}{(x+3)(x-3)} &= 0 && \text{Multiply both sides by } (x+3)(x-3)\\
\\
\cancel{(x+3)} \cancel{(x-3)} & \left[ \frac{-x-4}{\cancel{(x+3)}\cancel{(x-3)}} = 0 \right] (x+3)(x-3) && \text{Cancel out like terms}\\
\\
-x-4 &= 0 && \text{Add both sides by 4}\\
\\
-x - 4 + 4 &= 0 + 4 && \text{Simplify}\\
\\
-x &= 4 && \text{Multiply both sides by -1}\\
\\
-1 & [-x= 4] -1 && \text{Simplify}\\
\\
x &= -4
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...