Monday, September 4, 2017

Calculus and Its Applications, Chapter 1, 1.4, Section 1.4, Problem 40

Determine the $f'(x)$ of the function $\displaystyle f(x) = \frac{1 }{\sqrt{x}}$

$
\begin{equation}
\begin{aligned}
\frac{f(x + h) - f(x)}{h} &= \frac{\frac{1}{\sqrt{x + h}} - \frac{1}{\sqrt{x}}}{h}\\
\\
&= \frac{\sqrt{x} - \sqrt{x + h}}{h\sqrt{x}\sqrt{x + h}}
&& \text{Get the LCD}\\
\\
&= \frac{\sqrt{x} - \sqrt{x + h}}{h (\sqrt{x})( \sqrt{x + h})} \left( \frac{\sqrt{x} + \sqrt{x + h}}{\sqrt{x} + \sqrt{x + h}} \right)
&& \text{Multiply 1 by using the conjugate of the numerator}\\
\\
&= \frac{x - x - h}{h[x (\sqrt{x + h}) + (x + h) ( \sqrt{x})}\\
\\
&= \frac{-1}{x \sqrt{x + h} + (x + h)(\sqrt{x})}
\end{aligned}
\end{equation}
$

Thus,

$
\begin{equation}
\begin{aligned}
f'(x) = \lim_{h \to 0} \frac{ f(x + h) - f(x) }{h} &= \frac{-1}{x\sqrt{x + 0} + (x + 0)\sqrt{x}}\\
\\
&= \frac{-1}{x \sqrt{x} + x \sqrt{x}}\\
\\
&= \frac{-1}{2x \sqrt{x}}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...