Thursday, July 6, 2017

Single Variable Calculus, Chapter 3, 3.3, Section 3.3, Problem 85

Find a cubic function $y = ax^3 + bx^2 + cx + d$ whose graph has horizontal tangent at the points $(-2,6)$ and $(2,0)$

If the graph has horizontal tangents at some point, it means that their slope is equal to 0 at that point.
And the first derivative of a function is equal to its slope.


$
\begin{equation}
\begin{aligned}
y &= ax^3 + bx^2 + cx +d \\
\\
y' &= a \frac{d}{dx} ( x^3) + b \frac{d}{dx} (x^2) + c \frac{d}{dx} (x) = \frac{d}{dx} (d)\\
\\
0 &= a(3x^2) + b(2x) + c(1) + 0\\
\\
0 &= 3x^2a+2xb+c\\
\phantom{x}& \text{when } (x=-2)\\
\\
0 &= 3(-2)^2 a + 2(-2)b+c\\
\\
0 &= 12a - 4b + c && \text{Equation 1}\\
\phantom{x} & \text{when}(x=2)\\
\\
0 &= 3 (2)^2 a + 2(2)b + c\\
\\
0 &= 12a + 4b + c && \text{Equation 2}
\end{aligned}
\end{equation}
$


We can get another 2 Equations by substituting the given points to the given solution
when $x = -2$, $y = 6$

$
\begin{equation}
\begin{aligned}
6 & = a ( -2)^3 + b(-2)^2 + c(-2) +d\\
6 & = -8a + 4b - 2c + d && \text{Equation 3}
\end{aligned}
\end{equation}
$


when $x= 2$, $y = 0$

$
\begin{equation}
\begin{aligned}
0 &= a(2)^3 + b(2)^2 + c(2) +d\\
0 & = 8a + 4b + 2c + d && \text{Equation 4}
\end{aligned}
\end{equation}
$

We have 4 Equations and 4 Unknowns, combining these equations we get.

$
\begin{equation}
\begin{aligned}
12a - 4b + c &= 0\\
\\
12a + 4b + c &= 0\\
\\
-8a+4b-2c+d &= 6\\
\\
8a+4b+2c+d &= 0
\end{aligned}
\end{equation}
$


$
\begin{equation}
\begin{aligned}
a &= \frac{3}{16}\\
b &= 0\\
c &= \frac{-9}{4}\\
d &= 3
\end{aligned}
\end{equation}
$


Therefore, the cubic equation is $\displaystyle y = \frac{3x^3}{16} - \frac{9}{4} x + 3$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...