Saturday, July 8, 2017

int_0^(pi/2) t^3cost dt Use integration tables to evaluate the definite integral.

To evaluate the given integral problem: int_0^(pi/2) t^3 cos(t)dt , we may apply the First Fundamental Theorem of Calculus. It states that when continuous function f on closed interval [a,b] and F as indefinite integral of f then int_a^b f(x) dx = F(x)|_a^b or F(b)-F(a) .
The given integrand is f(t) =t^3 cos(t)dt on closed interval [0, pi/2] . To determine the indefinite integral F(t) , we may consider the formula from integration table. The integral int_0^(pi/2) t^3 cos(t)dt resembles the formula:int x^3 cos(ax) dx = ((3x^2)/a^2-6/a^4)cos(ax)+(x^3/a-(6x)/a^3)sin(ax) .
By comparison, the corresponding values are: x=t and a=1 . Applying the corresponding values on the formula, we get:
int_0^(pi/2) t^3 cos(t)dt=[((3t^2)/1^2-6/1^4)cos(1*t)+(t^3/1-(6t)/1^3)sin(1*t)]|_0^(pi/2)
=[(3t^2-6)cos(t)+(t^3-6t)sin(t)]|_0^(pi/2)
To solve for the definite integral, we may apply the  formula: F(x)|_a^b = F(b)-F(a) .
[(3t^2-6)cos(t)+(t^3-6t)sin(t)]|_0^(pi/2)
=[(3(pi/2)^2-6)cos(pi/2 )+((pi/2)^3-6(pi/2))sin(pi/2 )]
-[(3(0)^2-6)cos(0)+((0)^3-6(0))sin(0)]
 
=[(3pi^2/4-6)*0+((pi^3/8-3pi))*1] -[(0-6)*1 +(0-0)*0 ]
 
=[0+pi^3/8-3pi] -[-6 +0 ]
 
=[pi^3/8-3pi] -[-6 ]
 
=pi^3/8-3pi+6 or 0.451 (approximated value)

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...